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ABSTRACT

Subspace methods for data attack on state estimation: a data driven approach

Report Title

Data attacks on state estimation modify part of system measurements such that the tempered measurements cause 
incorrect system state estimates. Attack techniques proposed in the literature often require detailed knowledge of 
system parameters. Such information is difficult to acquire in practice. The subspace methods presented in this paper, 
on the other hand, learn the system operating subspace from

measurements and launch attacks accordingly. Conditions for the existence of an unobservable subspace

attack are obtained under the full and partial measurement models. Using the estimated system subspace,

two attack strategies are presented. The first strategy aims to affect the system state directly by hiding

the attack vector in the system subspace. The second strategy misleads the bad data detection mechanism

so that data not under attack are removed. Performance of these attacks are evaluated using the IEEE

14-bus network and the IEEE 118-bus network.
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I. INTRODUCTION

A cyber physical system (CPS) [1] is a collection of physical devices networked by a cyber

infrastructure with integrated sensing, communications, and control. A defining feature of CPS

is coordinated operations based on data collected from sensors deployed throughout the system.

Major examples of CPS include power grids, intelligent transportation systems, and networked

robotics.

An essential signal processing component of many CPSs is real-time state estimation based on

sensor measurements [2]. The state estimate provides a CPS with the real-time monitoring and

control capability. For instance, the state estimate of a power grid facilitates real-time economic

dispatch, contingency analysis, and computation of real-time electricity price [2].

The dependency of CPS on data communications makes it vulnerable to cyber attacks where an

adversary may break into the network, collect unauthorized information, and intercept and alter

sensor data. Because measurements are collected over a wide geographical area by distributed

data acquisition systems, sometimes through wireless links, communications networks that sup-

port modern CPSs have numerous points of vulnerabilities [3], [4]. For critical infrastructures

such as a power grid, a well planned coordinated attack may lead to a cascading failure and a

regional blackout [5].

To assess vulnerability of CPS to possible cyber attacks, it is important to study potential

attack mechanisms. In this paper, we consider an adversary who can modify certain sensor data

such that the corrupted data will mislead the CPS control with a wrong state estimate. We refer

to such a data attack on state estimation as a state attack. A major challenge of state attack is

to avoid being detected and identified by the fusion center.

In the literature, successful state attacks on a CPS, in particular a power grid, have been

reported. Liu, Ning, and Reiter [6] presented the first state attack strategy, where an adversary

replaces part of “normal” sensor data with “malicious data.” They showed that if an adversary

can control a sufficiently large number of sensor data, it can perturb the state estimate by an

arbitrary degree while avoiding detection at the control center. Subsequent works along this line

uncovered numerous attack and protection mechanisms [7]–[14].

Most proposed attack schemes require considerably detailed system information. In particular,

the network topology and physical system parameters are often required to construct attacks.
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Although such information may be obtained by penetrating the control center, security measures

can make it difficult in practice to access such information.

A. Summary of contributions

We consider the problem of data-driven attacks on state estimation, assuming that the adversary

is capable of monitoring a subset of system measurements without detailed knowledge of the

network topology and system parameters. The key idea in the proposed approach is to exploit

the subspace structure of the measurements, in the same spirit of subspace techniques in array

processing [15], beamforming [16], and system identification [17].

The main contribution of this paper is the development of subspace techniques for state attack.

To this end, we present two techniques with different characteristics. First, we show a construction

of an unobservable attack based on the estimated subspace structure of measurements. We

show further that, in constructing the attack, under certain conditions, monitoring only partial

measurements may be sufficient. In particular, we present a graph theoretic condition for the

existence of an unobservable attack under the partial measurement model.

The second subspace-based attack exploits the bad data detection and removal mechanisms.

In particular, the attack purposely triggers the bad data detection, but it is designed to mislead

the fusion center to remove data that are not tempered by the adversary while keeping some of

the falsified data. After such data removal, although the remaining data appear to be consistent

with the system model, the resulting state estimate may have an arbitrarily large error. We refer

to this type of attack as data framing attack in the sense that valid data are “framed” by the

adversary and removed incorrectly by the fusion center.

To demonstrate the effectiveness of these attacks, we consider the problem of state estimation

in a power system as a practical example of CPS. To this end, we consider the IEEE 14-bus

network and the IEEE 118-bus network [18].

An additional complexity of the power system is that the system observation is a nonlinear

function of the system state. This raises the issue of whether attacks constructed from a linear

model is effective in a nonlinear system. While we do not have theoretical guarantees, simulation

results show that the subspace-based data attacks perform well in the presence of nonlinearity

in system equations.
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B. Related work and organization

This paper extends some of the key results on state attacks that assume that the system

parameters and the network topology are known to the attacker. We describe below some of the

relevant techniques.

There is a substantial literature on state attacks when the system parameter and the network

topology are known. Liu, Ning, and Reiter [6] first introduced an unobservable attack on power

system state estimation, which can perturb the state estimate without being detected by the bad

data detector at the fusion center. Following their seminal work, the link between feasibility

of an unobservable attack and power system observability was made in [7], [8]. Consequently,

classical power system observability conditions [19] can be modified to check feasibility of

unobservable attacks and used to develop countermeasures based on sensor data authentication

[7]–[10], [12], [20], [21]. To assess the grid vulnerability against data attacks, the minimum

number of adversary-controlled sensors necessary for an unobservable attack was suggested as

the security index of the grid [8], [22]. The data framing attack, when the system parameters

are known, was first proposed in [23] to circumvent the fundamental limit posed by the security

index.

There is limited work on state attacks without system information or with partial system

information. The use of independent component analysis in [13] is the most relevant. The authors

of [13] proposed to identify a mixing matrix from which to construct an unobservable attack.

However, such techniques require that loads are statistically independent and non-Gaussian,

and the techniques need full sensor observations. Generating unobservable attacks using partial

parameter information was considered in [14]. The authors in [14] showed that an adversary

knowing impedance of transmission lines in a cutset of the network topology can construct

an unobservable attack. However, how an adversary can learn local parameters is nontrivial. In

contrast to the aforementioned approaches, our method requires no system parameter information,

and it can be launched with only partial sensor observations.

Attacks were also studied in the framework of a general dynamic CPS, under the assumption

of an omniscient adversary. For instance, an attack on a linear control system equipped with

a linear-quadratic-Gaussian controller was studied in [24]. Detectability and identifiability of

attacks on general CPS operations was characterized in [25]. The model considered in these
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papers is more general than the static model studied here. However, their assumption of an

adversary with complete system information is stronger than that in the present work.

The rest of this paper is organized as follows. Section II introduces the measurement model, the

mathematical model of state estimation and bad data processing, and the attack model. Section III

presents the subspace methods of unobservable attack, and Section IV presents the subspace

methods of data framing attack. In Section V, the results from simulations with benchmark

power grids are presented. Finally, Section VI provides concluding remarks.

II. MATHEMATICAL MODELS

A. Notations

An upper case boldface letter (e.g., H) denotes a matrix, a lower case boldface letter (e.g., x)

denotes a vector, and a script letter (e.g., A, S) denotes a set. The entry of H at the ith row and

the jth column is denoted by Hij , and the ith entry of x is denoted by xi. In addition, R(H)

and N(H) denote the column space and the null space of H respectively. And, I denotes an

identity matrix with an appropriate size.

B. Measurement model

The system state of a CPS is defined as a vector of variables that characterize the current

operating condition of the CPS. We assume centralized state estimation at the fusion center.

For real-time estimation of the system state x ∈ R
n, the fusion center collects measurements

from sensors deployed throughout the system. Generally, the sensor measurements are related

to the system state x in a nonlinear fashion, and the relation can be described by the nonlinear

measurement model (e.g., the AC model for a power grid [26]):

z = h(x) + e, (1)

where z ∈ R
m is the measurement vector, h(·) is the measurement function, and e is the Gaussian

measurement noise.

If some sensors malfunction or an adversary injects malicious data, the fusion center observes

biased measurements,

z̄ = h(x) + e+ a, (2)
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where a represents a deterministic bias. In such a case, the data are said to be bad, and the

biased sensor entries are referred to as bad data entries. The bad data vector is typically sparse,

and its support is unknown to the fusion center. If a is injected by an adversary, a is constrained

by its support.

In analyzing the attack effect on state estimation, we adopt a linearization of (1) around a

nominal state x0:

z = h(x0) +H(x− x0) + e, (3)

where H ∈ R
m×n is the measurement matrix that relates the system state to the measurement

vector, and e is the Gaussian measurement noise with a covariance matrix σ2I. Without loss of

generality, we assume that both h(x0) and x0 are zero vectors1 and employ the following model:

z = Hx+ e. (4)

A system is said to be observable if the measurement matrix H has full column rank (i.e.,

x can be uniquely determined from Hx.) System observability is essential for state estimation.

In practice, sensors should be placed in the network to satisfy observability. Hence, we assume

that the CPS of interest is observable, i.e., H has full column rank.

In practice, the nonlinear system and the nonlinear iterative state estimation techniques have

a certain mitigating effect on attacks designed based on a linear model [27]. It is therefore

important to validate performance of an attack strategy based on the nonlinear model (1) using a

nonlinear state estimator. Note that, while our attacks are constructed based on (4), our numerical

experiments validate their performance using the original nonlinear system (1) with a nonlinear

state estimator.

C. State estimation and bad data processing

This section introduces a popular approach to state estimation and bad data processing [26],

[28], which we assume to be employed by the fusion center. The specific approach is a widely

used standard implementation in the power grid where the number of states is in the order of

10,000, and the estimates are made every few minutes.

1For general cases, we can simply treat z1 , z − h(x0) and x1 , x − x0 as the measurement vector and the state vector

and work with z1 = Hx1 + e.
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Fig. 1. State estimation and bad data processing

Fig. 1 illustrates an iterative scheme for obtaining an estimate x̂ of the system state, which

consists of three functional blocks: state estimation, bad data detection, and bad data identifica-

tion.

The assumed state estimator is based on the maximum likelihood principle and is implemented

in a recursive manner. Iterations begin with the initial measurement vector z(1) , z and the initial

measurement function h(1) , h where the superscript denotes the index for the current iteration.

In the kth iteration, state estimation uses (z(k), h(k)) as an input and calculates the least squares

(LS) estimate of the system state and the corresponding residue vector:

x̂(k) , argminx

1

σ2
‖z(k) − h(k)(x)‖22,

r(k) , z(k) − h(k)(x̂(k)),

(5)

where ‖ · ‖2 denotes l2 norm. In practice, the above nonlinear LS estimate can be obtained by

iteration of a linearized LS estimation using Newton-Raphson or quasi-Newton methods [26].

Bad data detection employs the J(x̂)-test [26], [28]:










bad data if
1

σ2
‖r(k)‖22 > τ (k);

good data if
1

σ2
‖r(k)‖22 ≤ τ (k)

(6)

where τ (k) is a predetermined threshold. The J(x̂)-test is widely used due to its simplicity and

the fact that the test statistic has a χ2 distribution if the data are good [28]. The latter fact is

used to set the threshold τ (k) for a given false alarm constraint.
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If the bad data detector (6) declares that the data are good, the algorithm returns the state

estimate x̂(k) and terminates. However, if the bad data detector declares that the data are bad, bad

data identification is invoked to identify and remove one bad data entry from the measurement

vector.

A widely used criterion for identifying a bad data entry is the normalized residue [26], [28]:

each r
(k)
i is divided by its standard deviation under the hypothesis that z(k) contains no bad data.

Therefore, each normalized residue approximately follows the standard normal distribution if

z(k) contains no bad data. Specifically,

r̃(k) , Ω(k)r(k), (7)

where Ω(k) is a diagonal matrix with

Ω
(k)
ii ,



























0
if removing i makes

the system unobservable2;

1
√

σ2W
(k)
ii

otherwise;

(8)

and W(k) is defined as

I−H(k)((H(k))TH(k))−1(H(k))
T

(9)

with H(k) denoting the Jacobian of h(k) at x̂(k) (see Appendix of [28] for details.)

Once the normalized residue r̃(k) is calculated, the sensor with the largest |r̃(k)i | is identified as

a bad sensor. The row of z(k) and the row of h(k) that correspond to the bad sensor are removed,

and the updated measurement vector z(k+1) and measurement function h(k+1) are used as the

inputs for the next iteration.

Using the linearized model (4), every step is the same as using the nonlinear model, except

that the nonlinear measurement function h(k)(x) is replaced with the linear function H(k)x (so,

the Jacobian is the same everywhere.) Note that the LS state estimate (5) is replaced with a

simple linear LS solution:

x̂(k) = ((H(k))TH(k))−1(H(k))
T
z(k), (10)

2If removing the sensor i makes the system unobservable, its residue is always equal to zero [26], and the corresponding

diagonal entry of W(k) is zero. For such a sensor, the normalizing factor is 0 such that its normalized residue is equal to 0.
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and thus

r(k) = z(k) −H(k)x̂(k) = W(k)z(k). (11)

D. Adversary model

An adversary is assumed to be capable of modifying the data from a subset of sensors SA,

referred to as adversary sensors. The fusion center observes corrupted measurements z̄ instead

of the real measurements z. The adversarial modification is mathematically modeled by:

z̄ = z+ a, a ∈ A, (12)

where a is an attack vector, and A is the set of feasible attack vectors defined as

A , {a ∈ R
m : ai = 0, ∀i /∈ SA}. (13)

Liu, Ning, and Reiter [6] presented an unobservable attack, which is a powerful attack

mechanism capable of perturbing the state estimate without being detected. An unobservable

attack can be formally defined as follows.

Definition 2.1: Given a measurement vector z corresponding to a state x, i.e., z = Hx + e,

a state attack a ∈ A is unobservable if there exists a state x̄ 6= x such that z+ a = Hx̄+ e.

The following Lemma shows the algebraic property of the attack; it follows immediately from

the definition.

Lemma 2.1: A state attack is unobservable if and only if a 6= 0, and a ∈ R(H) ∩ A.

Furthermore, if a is unobservable, so is γ · a for any nonzero γ ∈ R, and ‖x − x̄‖2 → ∞

as γ → ∞.

The feasibility of an unobservable attack is closely related to the concept of system observ-

ability. In particular, the following connection was found in [8].

Theorem 2.1 ([8]): An unobservable attack is feasible if and only if removing the adversary

sensors makes the grid unobservable (i.e., the measurement matrix does not have full column

rank.)

Proof: See Appendix A.
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III. SUBSPACE METHODS FOR UNOBSERVABLE ATTACK

Most existing works on an unobservable attack assumed that an adversary knows the measure-

ment matrix H. In contrast, this section presents a design of an unobservable attack based on the

system measurement subspace, without knowledge of H. Employing the linearized measurement

model (4), we will present the conditions under which an unobservable attack can be constructed

based on the subspace information. We also demonstrate a condition that guarantees the design

of an unobservable attack based on partial sensor measurements; for an attack on a power grid,

this condition is characterized as a graph condition on the network topology.

A. Feasibility of an unobservable attack

Note that designing an unobservable attack is equivalent to finding a nonzero vector in R(H)

satisfying the sparsity pattern defined by A. Therefore, an unobservable attack, if feasible, can

be launched by using a basis matrix U ∈ R
m×n of R(H) without knowing H, as stated in the

following theorem. Formally, we refer to R(H) as the measurement subspace because it is the

subspace of all possible noiseless measurements.

Theorem 3.1: Let U be any basis matrix of R(H) and Ū a submatrix of U obtained by

removing the rows corresponding to the adversary sensors. Then, the following are true:

1) An unobservable attack is feasible if and only if Ū does not have full column rank.

2) When feasible, an unobservable attack can be constructed using U: for a nonzero vector

v ∈ N(Ū), a , Uv is an unobservable attack vector.

Proof: See Appendix B.

Note that in constructing the unobservable attack vector Uv, all that is necessary is a basis

matrix U of R(H).

B. Unobservable attack with partial measurements

In this section, we show that an unobservable attack can be constructed using the subspace

information of partial sensor measurements. To formally state the result, we need the notion of

a critical set of sensors [26] and partial observability defined as follows.

Definition 3.1: A set of sensors is called a critical set if removing the set of sensors from the

system renders the system unobservable while removing any strict subset of it does not. Let S

May 8, 2014 DRAFT
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and X denote a subset of sensors and a subset of state variables respectively. The state variables

in X are said to be observable with respect to S if the state variables in X can be uniquely

determined based on measurements from S3. When the state variables in X are observable with

respect to S, a subset C of S is a critical set with respect to (S,X) if removing C from S makes

the state variables in X no longer observable with respect to S while removing a strict subset of

C from S does not.

Consider a subset of sensors So. Let Xo denote the set of state variables whose values affect

measurements from the sensors in So (i.e., the |So| by n submatrix Ho of H, consisting of the rows

corresponding to the sensors in So, has nonzero columns exactly at the columns corresponding

to the state variables in Xo.)

The following theorem provides the conditions under which an unobservable attack can be

constructed based on the subspace information of measurements from So. The conditions roughly

mean that (i) based on measurements from So, one can uniquely identify the relevant state

variables (i.e., the variables in Xo,) and (ii) So contains a set of sensors, which, if controlled by

an adversary, is sufficient for launching an unobservable attack and is also critical with respect

to (So,Xo).

Theorem 3.2: Suppose that

1) the state variables in Xo are observable with respect to So,

2) C ⊂ So is a critical set with respect to (So,Xo), and

3) removing C makes the system unobservable.

Let Ho ∈ R
|So|×n denote the submatrix of H obtained by retaining only the rows corresponding

to the sensors in So. Then, the following are true:

1) Let Ao denote the set of vectors in R(Ho) such that b ∈ R(Ho) is in Ao if and only if the

rows of b corresponding to the sensors in So \ C are equal to zero. Then, the dimension

of Ao is one.

2) For an arbitrary nonzero ao ∈ Ao, the attack that modifies the sensor data from C by

adding the corresponding entries in ao to the real data is unobservable.

3In other words, every element of N(Hs) has zero entries for the rows corresponding to the state variables in X, where

Hs ∈ R
|S|×n is the submatrix of H obtained by retaining only the rows corresponding to the sensors in S.
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Proof: See Appendix C.

Note that Ao in Theorem 3.2 can be fully characterized based on a basis matrix of R(Ho).

The following corollary provides the detail of how an attack can be constructed from a basis

matrix of R(Ho).

Corollary 3.2.1: Suppose that the conditions 1), 2), and 3) of Theorem 3.2 hold. Let Uo ∈

R
|So|×|Xo| denote a basis matrix of R(Ho) and Ūo denote a submatrix of Uo obtained by removing

the rows corresponding to the sensors in C. Then, the following are true:

1) The dimension of N(Ūo) is one.

2) For any nonzero vector v ∈ N(Ūo), the attack that modifies the sensor data from C by

adding the corresponding entries in Uov to the real data is unobservable.

The three conditions of Theorem 3.2 are all related to system observability or partial observ-

ability. In case of a power grid, system observability and partial observability can be checked

based on partial information about the grid topology and sensor locations. In particular, the

graph-theoretical observability criterion in [19] can be employed.

A power grid is a network of buses connected by transmission lines. The topology of a grid

is naturally defined as an undirected graph G = (V,E) where V is the set of buses, and E is

the set of connected transmission lines: {i, j} is in E if and only if there exists a connected

transmission line between bus i and bus j. We consider two types of legacy sensors: line flow

sensors and bus injection sensors. A line flow sensor located on a line {i, j} measures the power

flowing through the line either from bus i to bus j or from bus j to bus i. A bus injection sensor

on bus i measures the total power injected into the network at bus i (see Appendix F for the

details of the sensor measurements.)

The following corollary presents the graph conditions that imply the conditions of Theorem 3.2

for an attack on a power grid state estimation. Appendix F provides the details of the graph-

theoretical observability criterion in [19], which directly results in the following corollary from

Theorem 3.2. To state the corollary, we need to introduce the concept of a reduced power

network. Given a subset So of sensors, the reduced network consists of the sensors in So and

the topology Ḡ = (V̄, Ē), where {i, j} is in Ē if and only if a line flow sensor on {i, j} is in

So, or an injection sensor at bus i or bus j is in So, and V̄ consists of all the endpoints of the

lines in Ē. For instance, in the IEEE 118-bus network, Fig. 2 describes a reduced network for
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114
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25

Fig. 2. A part of the IEEE 118-bus network: Rectangles represent the sensor locations. Every bus has an injection sensor, and

every line has line flow sensors for both directions.

So consisting of the circled sensors. In this example, the vertices and edges inside the dashed

boundary form Ḡ.

Corollary 3.2.2: Let So be a subset of sensors, Ḡ = (V̄, Ē) the topology of the reduced network

for So, and C a subset of So. Suppose that

1) There exists a cut of the grid topology G such that C consists of all line flow sensors on

the cutset lines and all injection sensors on the endpoints of the cutset lines.

2) For every sensor s in C, there exists a way to assign each injection sensor in (So \C)∪{s}

to a line incident to the bus where the sensor is located4 such that there exists a spanning

tree of Ḡ with at least one sensor in (So \C)∪ {s} on every edge of the tree (either a line

flow or an assigned injection sensor.)

4In other words, for an injection sensor located at bus i, we assign the injection sensor to one of the lines that are incident

to bus i. We do this for each injection sensor in (So \ C) ∪ {s}.
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Then, the conditions of Theorem 3.2 hold, and thus the statements in Theorem 3.2 and Corol-

lary 3.2.1 hold.

Note that the conditions of Corollary 3.2.2 are related to the topology and the sensor locations

in the reduced network. Therefore, an adversary can exploit partial information about the topology

and sensor locations to find an attack setting that enables an unobservable attack with partial

sensor observations. For instance, it can be easily checked that the example in Fig. 2 with C

consisting of the circled empty-rectangle sensors satisfies the conditions. In particular, the first

condition is satisfied with the cut that isolates bus 115 from the rest of the network.

C. Subspace attack algorithm

All the information necessary for subspace attack methods is the subspace information of

R(H) or R(Ho). Subspace estimation based on measurement data has been actively studied in

the signal processing literature (e.g., [29], [30]), and thus subspace methods naturally lead to a

data-driven algorithm for practical attack scenarios. Our focus in this section is to demonstrate

how (any) subspace estimator can be used to generate a data-driven attack.

One of the simplest yet effective ways of estimating a basis matrix is to use a sample covariance

matrix. Let z1, . . . , zK denote measurement vectors at K different sampling instances:

zi = Hxi + ei, i = 1, . . . , K. (14)

For simplicity, suppose that the noise vectors e1, . . . , eK are independent and identically dis-

tributed (i.i.d.), the state vectors x1, . . . , xK are i.i.d. with a positive definite covariance matrix

Σx, and the noise vectors and the state vectors are uncorrelated. Then, the covariance matrix of

z is

Σz , E
[

(z1 − E[z1])(z1 − E[z1])
T
]

= HΣxH
T + σ2I. (15)

Note that HΣxH
T has rank n. Therefore, if UΛVT is a singular value decomposition (SVD)

of Σz, the n columns of U that correspond to the n largest singular values form a basis of

R(HΣxH
T ). Because R(HΣxH

T ) is equivalent to R(H), the same columns form a basis of

R(H).
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Therefore, in practice, we can estimate a basis matrix of R(H) by applying SVD to the sample

covariance matrix Σ̂z:

Σ̂z ,
1

K − 1

K
∑

i=1

(zi − z)(zi − z)T , (16)

where z denotes the sample mean.

Based on the above (or any other) subspace estimator and Theorem 3.1, the data-driven attack

with full sensor observations operates as follows with the observations {z1, . . . , zK} and the

adversary sensor set SA as inputs:

1) Subspace estimation: Based on {z1, . . . , zK}, calculate an estimate Û ∈ R
m×n of a basis

matrix of R(H).

2) Null space estimation: Obtain Û1 by removing the rows of Û that correspond to the

sensors in SA. Find an SVD of Û1, Û1 = ŨΛ̃ṼT , and let v denote the column of Ṽ that

corresponds to the smallest singular value (v is an estimate of a nonzero element of N(Ū)

in Theorem 3.1.)

3) Attack: Modify the sensor data from SA by adding the corresponding entries of η · Ûv to

them, where η ∈ R is a scaling factor to adjust the degree of perturbation.

The data-driven attack with partial sensor observations can be constructed in the same manner

based on Corollary 3.2.1. Specifically, the attack receives (Xo, So,C) and {z̃1, . . . , z̃K}—the set

of measurements from the sensors in So at K different time instances—as inputs and executes

the following steps:

1) Subspace estimation: Based on {z̃1, . . . , z̃K}, calculate an estimate Ûo ∈ R
|So|×|Xo| of a

basis matrix of R(Ho).

2) Null space estimation: Obtain Ûc by removing the rows of Ûo that correspond to the

sensors in C. Find an SVD of Ûc: Ûc = ŨΛ̃ṼT . Let v denote the column of Ṽ that

corresponds to the smallest singular value (v is an estimate of a nonzero element of

N(Ūo) in Corollary 3.2.1.)

3) Attack: Modify the sensor data from C by adding the corresponding entries of η · Ûov to

them, where η ∈ R is a scaling factor to adjust the degree of perturbation.

IV. SUBSPACE METHODS FOR DATA FRAMING ATTACK

The idea of data framing attack based on full system parameter information was first presented

in [23]. In this section, we demonstrate data-driven approaches of data framing attack by
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exploiting the subspace structure of sensor measurements.

A. Data framing attack

A data framing attack aims to enable an adversary to perturb the state estimate by an arbitrary

degree even when an unobservable attack with SA does not exist. To this end, a data framing

attack frames some normally operating meters as sources of bad data such that their data will be

removed. A critical parameter of data framing attack is the set of sensors to be framed, denoted

by SF. The framed sensor set SF is selected such that SF ∩ SA = ∅, and if the sensors in SF are

removed from the system, an unobservable attack with SA becomes feasible. Under this selection

rule, an adversary may design an attack that becomes unobservable once the sensor data from

SF are removed by the bad data removal rule.

To successfully make the data from SF removed, one can use an attack vector that maximizes

the energy of the normalized residues at SF in the first iteration of the bad data processing. Such

an attack design does not necessarily guarantee that all data from SF will be identified as bad.

Nevertheless, this is a reasonable heuristic to circumvent the difficulty of analyzing attack effect

on normalized residues in all iterations.

To simplify notation, we drop the superscript that denotes the first iteration of bad data

processing: all the quantities in this section are from the first iteration unless otherwise specified.

The attack direction that maximizes the energy of the normalized residues in the first iteration

can be constructed by solving the following optimization [23]:

maxa E
[
∑

i∈SF
(r̃i)

2
]

subj. ‖a‖22 = 1, a ∈ R(H1) ∩A,
(17)

where H1 ∈ R
m×n is a matrix obtained from H by replacing the rows corresponding to the

sensors in SF with zero row vectors. The constraint a ∈ R(H1) holds if and only if a is

unobservable after the framed sensor data are removed. This constraint guarantees that once the

data from SF are removed, the attack can have the same effect as an unobservable attack.

The following theorem states that a solution to (17) can be obtained without knowing H if

we know a basis matrix of R(H).

Theorem 4.1: An adversary knowing a basis matrix U ∈ R
m×n of R(H) can find a solution

of (17). Specifically, a solution to the following quadratically constrained quadratic programming
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(QCQP) is also a solution to (17), and vice versa:

maxa ‖ISF
Ω̃W̃a‖22

subj. ‖a‖22 = 1, a ∈ R(U1) ∩A,
(18)

where ISF
∈ R

|SF|×m is the row selection operator that retains only the rows corresponding to

the sensors in SF out of m rows,

W̃ , I−U(UTU)−1UT , (19)

Ω̃ ∈ R
m×m is a diagonal matrix with

Ω̃ii =







1/
√

W̃ii if W̃ii > 0;

0 if W̃ii = 0,
(20)

and U1 ∈ R
m×n is a matrix obtained from U by replacing the rows corresponding to the sensors

in SF with zero row vectors.

Proof: See Appendix D.

Note that addition of the attack vector a changes the mean of the residue vector from 0 to

W̃a. And, ISF
Ω̃W̃a/σ is the resulting mean of the normalized residues of the data from SF.

B. Sufficiency of partial measurements

Similar to sufficiency of partial measurements for an unobservable attack (Theorem 3.2), data

framing attack can also be launched based on subspace information of partial measurements, as

stated formally in the following theorem. Below, we use the notations defined in Section III-B

for the partial measurement case.

Theorem 4.2: Suppose that the conditions 1), 2), and 3) of Theorem 3.2 hold for So, Xo, and

C. Let {C1, C2} denote an arbitrary partition of C. Let HA denote a submatrix of H consisting

of the rows corresponding to the sensors in So \ C2, UA ∈ R
|So\C2|×|Xo| denote a basis matrix of

R(HA), and ŪA denote a submatrix of UA obtained by removing the rows corresponding to the

sensors in C1. Then, the following are true:

1) The dimension of N(ŪA) is one.

2) For a nonzero vector v ∈ N(ŪA), the attack that modifies the sensor data from C1 by

adding the corresponding entries in UAv to the real data is equivalent to using α · a∗ as
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an attack vector, where α is a nonzero real number, and a∗ is an optimal solution to (17)

with (SA, SF) = (C1,C2).

Proof: See Appendix E.

Theorem 4.2 implies that knowledge of a basis matrix of R(HA)—the subspace of measure-

ments from So \ C2—is sufficient for launching a data framing attack with (SA, SF) = (C1,C2).

Note that Theorem 4.2 requires the same conditions as Theorem 3.2. Therefore, for an attack on

a power grid, the graph conditions in Corollary 3.2.2 can replace the conditions of Theorem 4.2.

C. Subspace data framing attack algorithm

Theorem 4.1 and Theorem 4.2 guarantee the sufficiency of subspace information in construct-

ing data framing attacks. Similar to the data-driven algorithms for unobservable attacks, we can

incorporate a subspace estimator and SVD to build a data-driven algorithm for data framing

attacks.

The data-driven framing attack with full sensor observations receives sensor observations

{z1, . . . , zK} at K different time instances and (SA, SF) as inputs, and it has two small positive

parameters ǫ1 and ǫ2 for thresholding rules. Based on the QCQP formulation (18), it works as

follows:

1) Subspace estimation: Based on {z1, . . . , zK}, calculate an estimate Û ∈ R
m×n of a basis

matrix of R(H).

2) Null space estimation: Obtain Û1 by removing the rows of Û that correspond to the

sensors in SA∪SF. Find an SVD of Û1: Û1 = ŨΛ̃ṼT . Let V̂ denote the matrix consisting

of the columns of Ṽ whose corresponding singular values are less than ǫ1. Let ÛA ∈ R
m×n

be the matrix obtained from Û by replacing the rows corresponding to the sensors not in

SA with zero row vectors. Then, ÛAV̂ is an estimate of a basis matrix of R(U1) ∩ A in

(18)5.

3) QCQP parameter estimation: Calculate

Ŵ , I− Û(ÛT Û)−1ÛT (21)

5A basis matrix of R(U1) ∩ A in (18) can be found by noting that a ∈ R(U1) ∩ A if and only if a = U1y for some

y ∈ N(U2) where U2 ∈ R
(m−|SA∪SF|)×n is a submatrix of U obtained by removing the rows corresponding to the sensors in

SA ∪ SF. In other words, given a basis matrix B of N(U2), U1B is a basis matrix of R(U1) ∩A.
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and Ω̂ ∈ R
m×m, which is a diagonal matrix with

Ω̂ii =







√

1/Ŵii if Ŵii > ǫ2;

0 if Ŵii < ǫ2.
(22)

4) QCQP: Solve maximizing ‖ISF
Ω̂ŴÛAV̂y‖22 subject to ‖ÛAV̂y‖22 = 1 and y ∈ R

k, where

k is the number of columns of V̂. Let y∗ denote the solution.

5) Attack: Modify the sensor data from SA by adding the corresponding entries of η ·ÛAV̂y∗

to them, where η ∈ R is a scaling factor to adjust the degree of perturbation.

Based on Theorem 4.2, the data-driven framing attack with partial sensor observations receives

(Xo, So,C1,C2) and {z̃1, . . . , z̃K}—the set of measurements from the sensors in So \ C2 at K

different time instances—as inputs and executes the following steps:

1) Subspace estimation: Based on {z̃1, . . . , z̃K}, calculate an estimate ÛA ∈ R
|SO\C2|×|XO| of

a basis matrix of R(HA).

2) Null space estimation: Obtain Ûc by removing the rows of ÛA that correspond to the

sensors in C1. Find an SVD of Ûc: Ûc = ŨΛ̃ṼT . Let v denote the column of Ṽ that

corresponds to the smallest singular value (v is an estimate of a nonzero element of N(ŪA)

in Theorem 4.2.)

3) Attack: Modify the sensor data from C1 by adding the corresponding entries of η · ÛAv

to them, where η ∈ R is a scaling factor to adjust the degree of perturbation.

V. NUMERICAL RESULTS

In this section, simulations with benchmark power grids, the IEEE 14-bus network and

the IEEE 118-bus network, demonstrate the performance of data-driven attacks. The nonlinear

measurement model (1) and the nonlinear state estimator were employed to emulate practical

power system state estimation. The power system measurement model is briefly described in

Appenidx F. As an attack performance metric, we used the l2 norm of the mean state estimation

error, i.e., E[‖x̂− x‖2], where x̂ is the state estimate, and x is the true state.

A. Simulation methods

In each Monte Carlo run, we used the nonlinear model (1) to generate measurement vectors.

State vectors at different time points were assumed to be independent and identically distributed
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Fig. 3. IEEE 14-bus network: The circled empty rectangles represent the adversary sensors (i.e., the sensors in SA). The

adversary with partial sensor observations can observe all the circled sensors.

Gaussian random vectors with the mean equal to the operating states given in the IEEE 14-bus

and 118-bus data [18]. The means are far from the nominal state that is generally used in a

power system to obtain the linearized model (4). The threshold of the bad data detector (i.e.,

the J(x̂)-test) was set to satisfy the false alarm constraint 0.04.

In each simulation scenario, we compared performance of three attack methods: an attack with

full knowledge of H, a data-driven attack with full sensor observations, and a data-driven attack

with partial sensor observations. For data-driven attacks, 1000 observations were used to estimate

a basis matrix of the subspace of (either full or partial) measurements; the attacks employed the

subspace estimator that uses the sample covariance matrix as described in Section III-C. Both

the 14-bus network and the 118-bus network were assumed to be fully measured; i.e., all bus

injections and all line flows (in both directions for each line) were measured by sensors.
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B. Data-driven unobservable attack

1) IEEE 14-bus test: In the IEEE 14-bus network, we considered an adversary controlling

data from (1̄), (3̄), (4̄), (5̄), (1, 2), (2, 1), (1, 5), (5, 1), (2, 5), (5, 2), (2, 4), (4, 2), (4, 3), and

(3, 4), as illustrated in Fig. 3: (̄i) denotes the injection sensor at bus i, and (i, j) denotes the

line flow sensor measuring the power flow from i to j. Theorem 2.1 and the spanning tree

observability criterion [19] imply that the adversary is capable of launching an unobservable

attack (see Appendix F.) In addition, the adversary sensor set is also a critical set, and thus all

possible unobservable attack vectors are aligned along the same direction (i.e., the dimension of

A ∩ R(H) is one.)

An adversary with partial sensor observations was assumed to observe data from (1̄), (2̄), (3̄),

(4̄), (5̄), (1, 2), (2, 1), (1, 5), (5, 1), (2, 5), (5, 2), (2, 4), (4, 2), (3, 4), (4, 3), (4, 5), (3, 2), (5, 6),

(4, 7), and (4, 9). In this setting, the spanning tree observability criterion can be used to verify

that the conditions of Theorem 3.2 are satisfied (see Appendix F,) and thus an adversary with

partial observations can construct an unobservable attack under the linearized model assumption.

Fig. 4 shows the performance of unobservable attacks, especially the plot of the normalized

state estimation error versus the relative attack magnitude (‖a‖1/‖z‖1). The mean state estimation

errors are normalized with respect to the mean estimation error under the non-attack scenario.

Both data-driven attacks performed as well as the attack with knowledge of H. The results

indicate that even in a practical nonlinear power system, the data-driven attacks designed based

on the linear model can perform well, and partial sensor observations can provide sufficient

information for designing an unobservable attack.

2) IEEE 118-bus test: In the IEEE 118-bus simulation, we considered unobservable attacks

discussed in the example in Fig. 2 of Section III-B. Fig. 5 shows the plots of the normalized

state estimation error versus the relative attack magnitude. Three methods resulted in almost the

same degree of perturbation on the state estimate. The results demonstrate that observing data

from a small fraction of sensors can be sufficient for launching an unobservable attack on a

large system; only about 2 percent of sensors need to be observed.

C. Data-driven framing attack

1) IEEE 14-bus test: For data framing attacks, we considered an adversary who controls (4̄),

(1, 5), (5, 1), (5, 2), (4, 2), (4, 3), and (3, 4), and frames (1̄), (3̄), (5̄), (1, 2), (2, 1), (2, 5), and
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Fig. 4. Unobservable attacks on the 14-bus network: the sensor SNR is 46dB. Attacks with the relative attack magnitudes 2,

4, 6, and 8 % were tested. For each scenario, 1,000 Monte Carlo runs are used.
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Fig. 5. Unobservable attacks on the 118-bus network: the sensor SNR is 46dB. Attacks with the relative attack magnitudes 2,

4, and 6 % were tested. For each scenario, 200 Monte Carlo runs are used.

(2, 4) as sources of bad data. Under this setting, an adversary cannot launch an unobservable

attack. An adversary with partial observations was assumed to observe data from (2̄), (4̄), (1, 5),

(5, 1), (5, 2), (4, 2), (3, 4), (4, 3), (4, 5), (3, 2), (5, 6), (4, 7), and (4, 9). This setting satisfies the

conditions of Theorem 4.2 and enables an adversary with partial sensor observations to launch
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Fig. 6. Data framing attacks on the 14-bus network: the sensor SNR is 46dB. Attacks with the relative attack magnitudes 1,

2, 3, and 4 % were tested. For each scenario, 1,000 Monte Carlo runs are used.

a data framing attack under the linearized model assumption (see Appendix F.)

Fig. 6 shows the plots of the normalized state estimation error versus the relative attack

magnitude. The results show that even when an unobservable attack is not feasible, an adversary

may exploit the idea of data framing to perturb the state estimate by an arbitrary degree.

Furthermore, the results indicate that partial sensor observations are sufficient for designing

a data framing attack.

2) IEEE 118-bus test: We considered an adversary attacking the part of the 118-bus network

illustrated in Fig. 2. The adversary was assumed to control (114, 115), (115, 114), and (27, 115),

and frame ( ¯114), ( ¯115), (2̄7), and (115, 27) as sources of bad data. An adversary with partial

sensor observations was assumed to observe data from the circled sensors in Fig. 2 except

( ¯114), ( ¯115), (2̄7), and (115, 27). The graph conditions of Corollary 3.2.2 are satisfied, and thus

an adversary with partial observations is capable of launching a data framing attack under the

linearized model assumption.

Fig. 7 shows the plots of the normalized state estimation error versus the relative attack

magnitude. The results demonstrate the sufficiency of partial sensor observations for designing

a data framing attack in a large network.
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Fig. 7. Data framing attacks on the 118-bus network: the sensor SNR is 46dB. Attacks with the relative attack magnitudes

0.8, 1.6, and 2.4 % were tested. For each scenario, 200 Monte Carlo runs are used.

VI. CONCLUSIONS

This paper presents subspace methods of data attacks on state estimators of cyber physical

systems. By exploiting the fact that subspace information of measurements is sufficient for

designing attacks, we devised data-driven attacks that can be launched based on partial sensor

observations. The numerical results demonstrated that the data-driven attacks are as efficient as

the attacks based on full system information.

Our results demonstrate that one should not presumably underestimate the ability of an

adversary even when system information is secure from the adversary. Even a leak of a small

fraction of certain sensor measurements may provide enough data, upon which state attacks can

be constructed.

Most countermeasures in the literature focused on protecting certain sensor data from adver-

sarial modification via data authentication, while assuming that system parameters are known to

adversaries (e.g., [7], [9], [12], [20]). In case that system parameter information is kept secure,

our results demonstrate that not only the ability to modify data but also the ability to observe

data are critical to an adversary. Therefore, as a countermeasure, on top of a data authentication

strategy, one can strategically enhance data encryption and access control protocols to limit the
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set of data an adversary may eavesdrop.

APPENDIX A

PROOF OF THEOREM 2.1

Let H̄ denote the measurement matrix after the sensors in SA are removed; i.e., H̄ is obtained

from H by removing the rows corresponding to the adversary sensors. Then, Hy is in A if and

only if y is in N(H̄)—the null space of H̄. This implies that an unobservable attack is feasible

if and only if H̄ does not have full column rank (i.e., N(H̄) has a nonzero dimension.)

APPENDIX B

PROOF OF THEOREM 3.1

The columns of Ū span R(H̄). In addition, because Ū and H̄ have the same number of

columns, Ū does not have full column rank if and only if H̄ does not have full column rank.

Therefore, Theorem 2.1 implies that an unobservable attack is feasible if and only if Ū does

not have full column rank.

Suppose that an unobservable attack is feasible. Then, Ū is rank deficient, and we can find

a nonzero vector v ∈ N(Ū). With a , Uv, a is in A because Uv has zero entries for the

sensors not in SA (i.e., Ūv = 0). In addition, there exists an invertible matrix B ∈ R
n×n such

that H = UB, and U = HB−1, because H has full column rank. Therefore, Uv = H(B−1v),

and thus a is an unobservable attack vector.

APPENDIX C

PROOF OF THEOREM 3.2

Let H̄ denote the submatrix of H obtained by removing the rows corresponding to the sensors

in C. Then, N(H̄) is not null due to the third assumption. Let y denote a nonzero vector in

N(H̄) and yo denote a subvector of y obtained by retaining only the rows corresponding to the

state variables in Xo. In addition, let Hs denote a submatrix of Ho obtained by retaining only

the columns corresponding to the state variables in Xo (note that all the other columns of Ho are

zero vectors.) And, H̄s denotes a submatrix of Hs obtained by removing the rows corresponding

to the sensors in C.
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First, note that ao ∈ Ao if and only if ao = Hsp for some p ∈ N(H̄s). In addition, because C

is a critical set with respect to (So,Xo), N(H̄s) has dimension one. Note that H̄syo = 0 whereas

Hsyo 6= 0. This implies that yo 6= 0, and {yo} is a basis of N(H̄s). Therefore, {Hsyo} is a basis

of Ao.

Therefore, for any nonzero ao ∈ Ao, there exists a nonzero α ∈ R such that ao = α ·Hsyo.

Furthermore, Hsyo = Hoy implies that

ao = α ·Hoy. (23)

In addition, H̄y = 0 implies that the attack that modifies the data from C by adding the

corresponding entries of ao to the actual data is equivalent to using α ·Hy as an attack vector,

which is unobservable. So, the attack is unobservable.

APPENDIX D

PROOF OF THEOREM 4.1

The normalized residues in the first iteration are affected by the attack a as follows:

r̃ = ΩW(z+ a) = ΩWe+ΩWa, (24)

which can be derived from (7) and (11). Note that (ΩWe)i follows a standard normal distribution

(due to the normalization) if {i} is not a critical set; (ΩWe)i is zero otherwise. Therefore, r̃i

follows the normal distribution N ((ΩWa)i, 1) if {i} is not a critical set; otherwise, r̃i is equal

to (ΩWa)i.

Therefore, the expected energy of the normalized residues at SF in the presence of the attack

a is

E

[

∑

i∈SF

(r̃i)
2

]

=
∑

i∈SF

(ΩWa)2i + C = ‖ISF
ΩWa‖22 + C, (25)

where C is the number of sensors in SF that do not form a single element critical set.

Consequently, a solution to (17) is also a solution to the following problem, and vice versa:

maxa ‖ISF
ΩWa‖22

subj. ‖a‖22 = 1, a ∈ R(H1) ∩A,
(26)

The theorem statements follow from the following observations: W is equal to W̃ as both

are orthogonal projections on the same space, and R(H1) is equivalent to R(U1).
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APPENDIX E

PROOF OF THEOREM 4.2

Let H̄ denote the submatrix of H obtained by removing the rows corresponding to the sensors

in C. First, from the proof procedure of Theorem 3.2, one can derive that the dimension of N(H̄)

is one. This implies that C contains exactly one critical set. Because, if there were more than

one critical sets included in C, N(H̄) should have a dimension larger than one.

Because SA ∪ SF = C contains exactly one critical set, the dimension of R(H1)∩A in (17) is

one. This can be seen as follows. The dimension of R(H1)∩A in (17) is equal to the dimension

of N(H2) where H2 is the matrix obtained from H by removing the rows corresponding to the

sensors in SA ∪ SF. And, the fact that SA ∪ SF contains exactly one critical set implies that the

rank of H2 is n− 1, and thus the dimension of N(H2) is 1.

Therefore, (17) has only two feasible points, and they give the same objective function values.

In particular, a solution to (17) is the direction given by H1∆x where ∆x is a nonzero vector

in N(H2) (see [23] for more detailed arguments.)

The first and second conditions of Theorem 3.2, which are assumed to hold, imply that the

dimension of N(ŪA) is one. In addition, it can be seen from Corollary 3.2.1 that the second

statement is true for a∗ = H1∆x and some nonzero α.

APPENDIX F

POWER GRID MEASUREMENT MODEL AND OBSERVABILITY

In this section, we briefly describe the power system measurement model and the spanning-tree

observability criterion in [19]. The spanning-tree observability criterion results in Corollary 3.2.2

from Theorem 3.2. For more details about power system models, see [26].

The power system state is defined as the vector of voltage magnitudes and phase angles at all

buses except a reference bus, which is an arbitrary bus whose voltage phase angle is set to zero:

x = [V1 V2 · · · Vn θ2 · · · θn]
T (27)

where Vi and θi denote the voltage magnitude and phase angle at bus i respectively, and bus 1

is set as the reference bus.
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We consider two types of legacy sensors: line flow sensors and bus injection sensors6. The

line flow from bus i to bus j is a complex quantity related to the system state by

Pij + j ·Qij = Vie
jθi ·

(

Vie
jθi − Vje

jθj

Zij

)∗

(28)

where Pij ∈ R and Qij ∈ R are real and imaginary parts of the line flow respectively, Zij is the

impedance of the line {i, j}, and X∗ denotes the complex conjugate of X . The bus injection at

bus i is the sum of all outgoing line flows from bus i.

For computational benefits, the above nonlinear relation is often linearized at the nominal

operating point where all bus voltage magnitudes are equal to 1 p.u., and all bus voltage phase

angles are equal to zero. This linearization decouples the relation such that the real part of

measurements depends only on the voltage phase angles, and the imaginary part depends only

on the voltage magnitudes.

The linearized relation between the real part of measurements and the voltage phase angles—

the so-called DC model—is often used to analyze power system observability. In the DC model

(4), the state x is defined as the vector of voltage phase angles at all buses except the reference

bus:

x = [θ2 θ3 · · · θn]
T . (29)

The measurement matrix H depends on the topology and line impedance7.

The power system is observable if and only if H has full column rank [19]. Verifying this rank

condition seems to require knowledge of the line impedance. However, Krumpholz et al. [19]

showed that system observability can be determined purely based on the topology and sensor

locations. In particular, Krumpholz et al. [19] showed that a system is observable if and only if

there exists a way to assign each injection sensor to any of the lines that are incident to the bus

where the sensor is located such that there exists a spanning tree of the topology having at least

6Other types of sensors (e.g., phasor measurement units) can also be considered. We impose this restriction merely to facilitate

clearer presentation.

7To describe the entries of H, we consider a noiseless measurement vector z = Hx for simplicity. Suppose that the kth

entry of z is a measurement from a line flow sensor measuring the line flow from bus i to j. Then, if the line is connected,

zk = Bij(θi − θj), where Bij is the susceptance of the line; if the line is not connected, zk = 0. In case that zk corresponds

to an injection sensor at bus i, zk is the sum of all the outgoing line flows from bus i.
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one sensor (an assigned injection or line flow sensor) on each edge of the tree (see Corollary 2

in [19].)

The spanning tree criterion can also be used to check whether the state variables in Xo are

observable with respect to So (we use the notations in Section III-B.) Without loss of generality,

we assume that So contains an injection sensor on the reference bus or a line flow sensor on a

line incident to the reference bus8. Then, we can simply apply the spanning tree criterion to the

reduced network for So (see Section III-B for the definition of a reduced network.) The state

variables in Xo are observable with respect to So if and only if it is possible to assign injection

sensors in So to their neighboring lines such that a spanning tree of the reduced network with

at least one sensor in So on every edge exists.
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